Examining the Relationship Between Majority Vote Accuracy and Diversity in Bagging and Boosting

نویسنده

  • C. J. Whitaker
چکیده

Much current research is undertaken into combining classifiers to increase the classification accuracy. We show, by means of an enumerative example, how combining classifiers can lead to much greater or lesser accuracy than each individual classifier. Measures of diversity among the classifiers taken from the literature are shown to only exhibit a weak relationship with majority vote accuracy. Two commonly used methods of designing classifier ensembles, Bagging and Boosting, are examined on benchmark datasets. Bagging is shown to produce teams with little diversity or improvement in accuracy, while Boosting tends to produce more diverse classifier teams showing an improvement in accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examining the Relationship Between Majority Vote Ac - curacy and Diversity in Bagging and

Much current research is undertaken into combining classifiers to increase the classification accuracy. We show, by means of an enumerative example, how combining classifiers can lead to much greater or lesser accuracy than each individual classifier. Measures of diversity among the classifiers taken from the literature are shown to only exhibit a weak relationship with majority vote accuracy. ...

متن کامل

Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran

An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...

متن کامل

The Role of Combining Rules in Bagging and Boosting

To improve weak classifiers bagging and boosting could be used. These techniques are based on combining classifiers. Usually, a simple majority vote or a weighted majority vote are used as combining rules in bagging and boosting. However, other combining rules such as mean, product and average are possible. In this paper, we study bagging and boosting in Linear Discriminant Analysis (LDA) and t...

متن کامل

Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy

In combining classifiers, it is believed that diverse ensembles perform better than non-diverse ones. In order to test this hypothesis, we study the accuracy and diversity of ensembles obtained in bagging and boosting applied to the nearest mean classifier. In our simulation study we consider two diversity measures: the Q statistic and the disagreement measure. The experiments, carried out on f...

متن کامل

An experimental study on diversity for bagging and boosting with linear classifiers

In classifier combination, it is believed that diverse ensembles have a better potential for improvement on the accuracy than nondiverse ensembles. We put this hypothesis to a test for two methods for building the ensembles: Bagging and Boosting, with two linear classifier models: the nearest mean classifier and the pseudo-Fisher linear discriminant classifier. To estimate diversity, we apply n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000